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Abstract

The proximity effects of multiple step transmission line

a computer assisted integral equation technique and good
exact asymptotic solutions is obtained. New results for

geometries are presented.

Introduction

A universal problem in transmission line
structures is predicting accurately the inter-
actions of multiple step discontinuities in

close proximity. Moreoverr these effects are

of increasing importance as device complexity

and performance increase together with the

utilization of higher and wider frequency

ranges.

A new approach to the problem is to
divide the stepped conducting surface into

strips, find the Green’s function formulation
for any strip, use the Green’s function
formulation to create a set of linear Fredholm
integral equations and numerically solve these

equations for charge densities (i.e. , capaci-
ties) using a digital computer program.

This paper presents the results of

applying this technique to yield the proximity
effects of both symmetric and unsymmetric step
discontinuities for a range of step geometries

and separations. Accuracies of better than 6%

have been confirmed experimentally and further
confirmation is presented for asymptotic
solutions for which exact analytical results
are available.

Discussion

The problem of finding the discontinuity

capacitance for a single step discontinuity
has been rigorously solved by conformal

mapping and higher order mode expansions.1-3

A complicated multiple step geometry readily
lends itself to solution by integral approxi-

mation. With this technique the conducting
surface to be analyzed is broken up into
several infinitely long strips of width w

each carrying an unknown charge density ~ .
The potential vk on one of these strips at

point P due to all other strips at points Q
can be expressed as:
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If the strip widths ar; small enough to assume

the surface charge density is constant on the
strip, thenq=~wand
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discontinuities have been computed by

agreement with experimental data and
typical matching structures and filter

Once this integral expression is evaluated for
each strip, the resulting matrix is inverted,
yielding the capacitance matrix for the

modeled surface.4

The capacitance matrix for a particular

geometry includes the contributions of all
the fields exterior to the conducting surface

as well as interior (see Figure 1) . To arrive

at the discontinuity capacitance Cd the
fringing fields Cfl and Cf2 must be separately

calculated and subtracted out. Cfl + Cl is
calculated for a particular geometry by
letting d*O. At this asymptotic limit Cf2,

C2 and cd all must be zero. C2 is just the
known capacitance between two parallel plates

and is directly calculable. Cf2 is the

fringing capacity due tothe top of the step
and is arrived at by approximating it as the
average fringing due to an element of length

d/2 on a parallel plate capacitor of length
L + d/2 and average height (b + a) . The

error in this approximation can be made very

small, and usually represents an error less
than 2% in Cd depending upon b/a and d/a

ratios .

Figure 2 shows a plot of discontinuity
capacitance versus b/a ratio for the asymptotic
case of large d, which is equivalent to two
single steps. The exact conformal mapping

solution for a single step in plane parallel
geometry is also plotted from the formula:3

Accuracy depends on the number of elements
used to model the conducting surfaces and on
the aspect ratio L/b. If L is too short, the
fringing fields Cfl distort the discontinuity
capacitance Cd. The range of accuracy is
from less than 1% error for small b/a ratios
to about 3% for b/a = .9.

Results

For a geometry such as in Figure 1, the
net effect of close step proximity is to

reduce discontinuity capacitance. This re-

duction of discontinuity capacitance with
decreasing d/a ratio is shown in Figure 3 for
three b/a ratios. In each case the discon-
tinuity capacitance is normalized to one for

values of d/a approaching infinity. Both
curves show a significant reduction in dis-

continuity capacitance from the single step
case for d/a ratios less than one.
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The experimental device shown i~ Figue 4
was ccr.struct.ed in a coaxial APC-7 line of 50
ohms to measure the proximity effect of
symmetric discontinuities at microwave

frequencies (1.75 to 18.0 GHZ). Return loss

and reflection phase data were taken on a
computerized network analyzer and used to
calculate the discontinuity capacitance
assuming the circuit model shown. Normalized
data taken at 2.5 GHz is shown in Figure 4
which corresponds reasonably with predicted

results. However, data taken by the authors

at higher frequencies indicate that this simple

model breaks down due to the distributed

nature of cd.

The charge distribution for a symmetric,

two step discontinuity with a b/a ratio of .3

and d/a ratio of 2.4 is plotted in Figure 5.
The fringing field charge distributions on the
exterior of the structure have been subtracted
out , leaving only the parallel plate and dis-

continuity charges. It is significant that
the maximum charge buildup occurs before the
geometric discontinuities (see Figure 5) and

that between them the charge is depressed,

giving a net inductive effect. Thus, a better

circuit model at high frequencies for a step

discontinuity would be a short section of line
with excess capacitance followed by a section
with excess inductance.

More complicated geometries can be

analyzed using this integral approximation
technique. An example of an unsymmetrical

geometry with four step discontinuities is
shown in Figure 6. For this case, the dis-

continuity capacitance variation as a function
of the spacing d between the unsymmetrical

steps is plotted for step ratios bl/a = .5 and
b2/a = .75. Exact values for the asymptotic

cases with separation approaching zero and

infinity are also plotted. The large variation

of capacitance with spacing demonstrates the

necessity for compensating this effect with
spacing and impedance changes in filter and
transformer designs. Charge distribution

studies indicate that in this case each step
has a different proximity factor. The dis-

continuity capacitance in the region of the
shallow step (b2/a = .75) is depressed much

more rapidly with decreasing separation than
in the corresponding symmetric case.

Conclusion

A new method for calculating discontinuity

capacitance and charge distribution for

complex multiple step geometries by the use of
an integral equation technique has been pre-
sented. This method has been applied to both
symmetric and unsymmetric geometries. Good

agreement with exact solutions to single step
discontinuities for asymptotic cases has been
shown. The curves of Figure 3 indicate that

for geometries with small d/a ratios a large
reduction in actual discontinuity capacitance
occurs when compared to the single step cases.
Charge distribution indicates that a lumped

equivalent circuit model for discontinuity
capacity has limitations. An extension of

this method to treat inhomogenous dielectrics

and more complicated multiple step discontin-
uities is currently under investigation by
the authors.
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Fig. 1 Geometry for Symmetric Double Step Discontinuity
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Fig. 2 Step Discontinuity Capacitance
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Fig. 3 Proximity Factors for Symmetric Double Step

Discontinuity
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Fig. 5 Charge Density Versus Position for Symmetric

Step Discontinuity with Step Ratio of .3
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