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Abstract

The proximity effects of multiple step transmission line discontinuities have been computed by
a computer assisted integral equation technique and good agreement with experimental data and

exact asymptotic solutions is obtained.
geometries are presented.

Introduction

A universal problem in transmission line
structures is predicting accurately the inter-
actions of multiple step discontinuities in
close proximity. Moreover, these effects are
of increasing importance as device complexity
and performance increase together with the
utilization of higher and wider frequency
ranges.

A new approach to the problem is to
divide the stepped conducting surface into
strips, find the Green's function formulation
for any strip, use the Green's function
formulation to create a set of linear Fredholm
integral equations and numerically solve these
equations for charge densities (i.e., capaci-
ties) using a digital computer program.

This paper presents the results of
applying this technique to yield the proximity
effects of both symmetric and unsymmetric step
discontinuities for a range of step geometries
and separations. Accuracies of better than 6%
have been confirmed experimentally and further
confirmation is presented for asymptotic
solutions for which exact analytical results
are available.

Discussion

The problem of finding the discontinuity
capacitance for a single step discontinuity
has been rigorously solved by conformal
mapping and higher order mode expansions. -3
A complicated multiple step geometry readily
lends itself to solution by integral approxi-
mation. With this technique the conducting
surface to be analyzed is broken up into
several infinitely long strips of width w
each carrying an unknown charge density(j’.
The potential Vi on one of these strips at
point P due to all other strips at points Q
can be expressed as:
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If the strip widths are small enough to assume

the surface charge density is constant on the
strip, thenq=01~and
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New results for typical matching structures and filter

Once this integral expression is evaluated for
each strip, the resulting matrix is inverted,
yielding the capacitance matrix for the
modeled surface.

The capacitance matrix for a particular
geometry includes the contributions of all
the fields exterior to the conducting surface
as well as interior (see Figure 1). To arrive
at the discontinuity capacitance Cg the
fringing fields Cg)] and Cf) must be separately
calculated and subtracted out. Cg) + C1 is
calculated for a particular geometry by
letting d-—» 0. At this asymptotic limit Cgjp,
C2 and Cg all must be zero. C2 is just the
known capacitance between two parallel plates
and is directly calculable. Cf2 is the
fringing capacity due to the top of the step
and is arrived at by approximating it -as the
average fringing due to an element of length
d/2 on a parallel plate capacitor of length
L + d/2 and average height (b + a). The
error in this approximation can be made very
small, and usually represents an error less
than 2% in Cyq depending upon b/a and d/a
ratios.

Figure 2 shows a plot of discontinuity
capacitance versus b/a ratio for the asymptotic
case of large 4, which 'is equivalent to two
single steps. The exact conformal mapping
solution for a single step in plane parallel
geometry is also plotted from the formula:
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Accuracy depends on the number of elements
used to model the conducting surfaces and on
the aspect ratio L/b. If L is too short, the
fringing fields Cg)] distort the discontinuity
capacitance Cg. The range of accuracy is
from less than 1% error for small b/a ratios
to about. 3% for b/a = .9.

Cd = -2In

Results

. For a gecmetry such as in Figure 1, the
net effect of close step proximity is to
reduce discontinuity capacitance. This re-
duction of discontinuity capacitance with
decreasing d/a ratio is shown in Figure 3 for
three b/a ratios. In each case the discon-
tinuity capacitance is normalized to one for
values of d/a approaching infinity. Both
curves show a significant reduction in dis-
continuity capacitance from the single step
case for d/a ratios less than one.



The experimental device shown in Figure 4
was ccnstructed in a coaxial APC-7 line of 50
ohms to measure the proximity effect of
symmetric discontinuities at microwave
frequencies (1.75 to 18.0 GHz). Return loss
and reflection phase data were taken on a
computerized network analyzer and used to
calculate the discontinuity capacitance
assuming the circuit model shown. Normalized
data taken at 2.5 GHz is shown in Figure 4
which corresponds reasonably with predicted
results. However, data taken by the authors
at higher frequencies indicate that this simple
model breaks down due to the distributed
nature of Cg.

The charge distribution for a symmetric,
two step discontinuity with a b/a ratio of .3
and d/a ratio of 2.4 is plotted in Figure 5.
The fringing field charge distributions on the
exterior of the structure have been subtracted
out, leaving only the parallel plate and dis-
continuity charges. It is significant that
the maximum charge buildup occurs before the
geometric discontinuities (see Figure 5) and
that between them the charge is depressed,
giving a net inductive effect. Thus, a better
circuit model at high frequencies for a step
discontinuity would be a short section of line
with excess capacitance followed by a section
with excess inductance.

More complicated geometries can be
analyzed using this integral approximation
technique. An example of an unsymmetrical
geometry with four step discontinuities is
shown in Figure 6. For this case, the dis-
continuity capacitance variation as a function
of the spacing d between the unsymmetrical
steps is plotted for step ratios bil/a = .5 and
b2/a = .75. Exact values for the asymptotic
cases with separation approaching zZero and
infinity are also plotted. The large variation
of capacitance with spacing demonstrates the
necessity for compensating this effect with
spacing and impedance changes in filter and
transformer designs. Charge distribution
studies indicate that in this case each step
has a different proximity factor. The dis-
continuity capacitance in the region of the
shallow step (b2/a = .75) is depressed much
more rapidly with decreasing separation than
in the corresponding symmetric case.

Conclusion

A new method for calculating discontinuity
capacitance and charge distribution for
complex multiple step geometries by the use of
an integral equation technique has been pre-
sented. This method has been applied to both
symmetric and unsymmetric geometries. Good
agreement with exact solutions to single step
discontinuities for asymptotic cases has been
shown. The curves of Figure 3 indicate that
for geometries with small d/a ratios a large
reduction in actual discontinuity capacitance
occurs when compared to the single step cases.
Charge distribution indicates that a lumped
equivalent circuit model for discontinuity
capacity has limitations. An extension of
this method to treat inhomogenous dielectrics
and more complicated multiple step discontin-
uities is currently under investigation by
the authors.
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